|
CGAL 6.2 - 2D and 3D Linear Geometry Kernel
|
AdaptableBinaryFunction Operations | |
A model of this concept must provide: | |
| bool | operator() (const Kernel::Sphere_3 &s, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of s. | |
| bool | operator() (const Kernel::Sphere_3 &s, const Kernel::IsoCuboid_3 &i) |
returns true iff i lies on the bounded side of s. | |
| bool | operator() (const Kernel::Tetrahedron_3 &t, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of t. | |
| bool | operator() (const Kernel::IsoCuboid_3 &c, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of c. | |
| bool | operator() (const Kernel::Circle_3 &c, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of c. | |
| bool | operator() (const Kernel::Sphere_3 &s1, const Kernel::Sphere_3 &s2, const Kernel::Point_3 &a, const Kernel::Point_3 &b) |
returns true iff the line segment ab is inside the union of the bounded sides of s1 and s2. | |
| bool Kernel::HasOnBoundedSide_3::operator() | ( | const Kernel::Sphere_3 & | s, |
| const Kernel::IsoCuboid_3 & | i | ||
| ) |
returns true iff i lies on the bounded side of s.
The corner points of i are allowed to be on the boundary of s.