#include <CGAL/Linear_cell_complex_for_combinatorial_map.h>
#include <CGAL/Linear_cell_complex_constructors.h>
#include <CGAL/Curves_on_surface_topology.h>
#include <CGAL/Path_on_surface.h>
#include <CGAL/draw_face_graph_with_paths.h>
{
for (int i=0; i<7; ++i)
}
{
for (int i=0; i<13; ++i)
}
int main(int argc, char** argv)
{
bool draw=(argc>1?std::string(argv[1])==
"-draw":
false);
LCC_3_cmap lcc;
{
std::cout<<
"ERROR reading file "<<
CGAL::data_file_path(
"meshes/double-torus-example.off") << std::endl;
exit(EXIT_FAILURE);
}
create_path_1(p1);
create_path_2(p2);
create_path_3(p3);
bool res1=cst.is_contractible(p1);
std::cout<<"Path p1 (pink) "<<(res1?"IS":"IS NOT")
<<" contractible."<<std::endl;
bool res2=cst.are_freely_homotopic(p1, p2);
std::cout<<"Path p1 (pink) "<<(res2?"IS":"IS NOT")
<<" homotopic with path p2 (green)."<<std::endl;
bool res3=cst.are_freely_homotopic(p1, p3);
std::cout<<"Path p1 (pink) "<<(res3?"IS":"IS NOT")
<<" homotopic with path p3 (orange)."<<std::endl;
{
auto cycles={p1, p2, p3};
}
return EXIT_SUCCESS;
}
The class Curves_on_surface_topology provides methods to compute shortest non contractible cycles and...
Definition: Curves_on_surface_topology.h:13
The class Path_on_surface represents a walk in a mesh which is either a model of CombinatorialMap,...
Definition: Path_on_surface.h:13
void extend_positive_turn(std::size_t nb)
adds the dart/halfedge obtained by turning nb times around the target vertex of the last dart/halfedg...
void push_back_by_index(std::size_t i)
adds the dart/halfedge with index i at the end of this path.
void draw(const LCC &lcc, const GSOptions &gso)
void draw(const SM &sm, const GSOptions &gso)
Definition: Curves_on_surface_topology.h:3
std::string data_file_path(const std::string &filename)