CGAL 6.1 - Tetrahedral Remeshing
Loading...
Searching...
No Matches
Tetrahedral_remeshing/mesh_and_remesh_with_sizing.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>
#include <CGAL/Labeled_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/tetrahedral_remeshing.h>
#ifdef CGAL_CONCURRENT_MESH_3
typedef CGAL::Parallel_if_available_tag Concurrency_tag;
#else
typedef CGAL::Sequential_tag Concurrency_tag;
#endif
// Domain
typedef K::FT FT;
typedef K::Point_3 Point;
typedef FT (Function)(const Point&);
typedef CGAL::Labeled_mesh_domain_3<K> Mesh_domain;
// Triangulation
// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;
// Triangulation for Remeshing
using T3 = CGAL::Triangulation_3<Tr::Geom_traits,
Tr::Triangulation_data_structure>;
namespace params = CGAL::parameters;
// Sizing field
struct Spherical_sizing_field
{
typedef K::FT FT;
typedef K::Point_3 Point_3;
typedef Mesh_domain::Index Index;
FT operator()(const Point_3& p, const int, const Index&) const
{
FT sq_d_to_origin = CGAL::squared_distance(p, Point(CGAL::ORIGIN));
return CGAL::abs(CGAL::sqrt(sq_d_to_origin) - 0.5) / 5. + 0.025;
}
};
// Function
FT sphere_function (const Point& p)
{
return CGAL::squared_distance(p, Point(CGAL::ORIGIN)) - 1;
}
int main()
{
Mesh_domain domain = Mesh_domain::create_implicit_mesh_domain
(sphere_function, K::Sphere_3(CGAL::ORIGIN, K::FT(2))
);
// Mesh criteria
Spherical_sizing_field size;
Mesh_criteria criteria(params::facet_angle(30).facet_size(0.1).facet_distance(0.025).
cell_radius_edge_ratio(2).cell_size(size));
// Mesh generation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria, params::no_exude().no_perturb());
T3 tr = CGAL::convert_to_triangulation_3(std::move(c3t3));
//note we use the move semantic, with std::move(c3t3),
// to avoid a copy of the triangulation by the function
// `CGAL::convert_to_triangulation_3()`
// After the call to this function, c3t3 is an empty and valid C3t3.
//It is possible to use : CGAL::convert_to_triangulation_3(c3t3),
// Then the triangulation is copied and duplicated, and c3t3 remains as is.
std::cout << "Remeshing...";
std::cout.flush();
std::cout << "\rRemeshing done." << std::endl;
return EXIT_SUCCESS;
}
NT abs(const NT &x)
NT sqrt(const NT &x)
unspecified_type no_perturb()
void tetrahedral_isotropic_remeshing(CGAL::Triangulation_3< Traits, TDS, SLDS > &tr, const SizingFunction &sizing, const NamedParameters &np=parameters::default_values())
remeshes a tetrahedral mesh.
Definition: tetrahedral_remeshing.h:186
CGAL::Triangulation_3< typename Tr::Geom_traits, typename Tr::Triangulation_data_structure > convert_to_triangulation_3(CGAL::Mesh_complex_3_in_triangulation_3< Tr, CornerIndex, CurveIndex > c3t3, const NamedParameters &np=parameters::default_values())
converts the triangulation contained in the input to a Triangulation_3.
Definition: tetrahedral_remeshing.h:356
const CGAL::Origin ORIGIN
Kernel::FT squared_distance(Type1< Kernel > obj1, Type2< Kernel > obj2)