CGAL 6.0.1 - 2D and 3D Linear Geometry Kernel
Loading...
Searching...
No Matches
Bibliography
[1]

H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics, 109:25–47, 2001.

[2]

C. M. Hoffmann. The problems of accuracy and robustness in geometric computation. IEEE Computer, 22(3):31–41, March 1989.

[3]

C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo, CA, 1989.

[4]

Guillaume Melquiond and Sylvain Pion. Formal certification of arithmetic filters for geometric predicates. In Proc. 17th IMACS World Congress on Scientific, Applied Mathematics and Simulation, 2005.

[5]

Stefan Schirra. Robustness and precision issues in geometric computation. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, chapter 14, pages 597–632. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[6]

C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series on Computing, pages 452–492. World Scientific, Singapore, 2nd edition, 1995.

[7]

C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1):3–23, 1997.